6/H-16 (vii) (Syllabus-2015)

2018

(April)

ECONOMICS

(Honours)

(Statistics)

Marks: 75
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, taking at least one from each Unit
Unit-I

1. (a) What are the characteristics of a good measure of central tendency?
(b) Find the mean and standard deviation of first n-natural numbers. $3+7=10$
2. (a) Find the 'mean deviation from median' of the following data :
$17,26,14,16,12,24,21$
(b) Calculate variance and coefficient od
(b) Fit a trend equation $Y=a+b X$ and obtain the trend values from the
variation from the following data: $4^{4 t}$ following data:
$10+3=13$

$$
\begin{array}{cccccccc}
X & : & 0 & 5 & 10 & 15 & 20 & 25 \\
\mathbf{Y} & : & 10 & 14 & 19 & 25 & 31 & 36
\end{array}
$$

j. (a) Define index number and briefly discuss its uses.
(b) The prices per unit and the number of units consumed for four commodities A, B, C and D in two time periods are given below :

3. Calculate Karl Pearson's coefficient Correlation between Pearson's coefficient from the between expenditure and Expenditure ('OOO data given below : | Sale (in lakh ('000) | P) | 39 |
| :--- | :--- | :--- |
| | 67 | 5 |
4. The values

X	12	13	14					
Y	$:$	80	14	11	8	6	4	2
90								

Compute Laspeyres', Paasche's and Fisher's. index numbers.

$$
4+4+2=10
$$

Unit-IV

7. (a) State the addition and multiplication rules of probability.

(4)

(b) Let x be a random variable with set space $S=\{1,2,3,4,5\}$ and $P(x=1)=$ $P(x=2)=\frac{1}{4}, \quad P(x=3)=\frac{3}{8}, \quad P(x=4 ;$ $P(x=5)=\frac{1}{16}$. Find the probability the following :
(i) $P(x=4$ or $x=1)$
(ii) $P(x$ is at least 1$)$
(c) What is a binomial distribution? that Poisson distribution is a case of binomial distribution.
8. Distinguish between the following three) :
(a) Simple and Composite hypotheses $5^{e^{5}}$
(b) Type-I errors and
(c) One-tio ${ }^{\text {(s) }}$ hypothesis and Two-tailed
(d) Simple random sampling and Sta $^{(d)}$ Maple random sampling and $S^{t r^{\text {a }}}$ (e) χ^{2}-distribumpling χ^{2}-distribution and t-distribution

